REVERSIBLE TRAPPING OF LABILE 21-DEHYDROHETEROYOHIMBINES

AS 21-CYANO ADDUCTS.

Richard T. Brown and John Leonard

(Department of Chemistry, The University, Manchester M 13 9 PL, England.)
(Received in UK 26 September 1977; accepted for publication 6 October 1977)

Recently we reported the biomimetic conversion of strictosidine (3a) into tetrahydroalstonine (8a) and vincoside (3b) into akuammigine (8b). Both were kinetically controlled reactions where the more rapidly formed, N_4 - C_{21} cyclised intermediates were reduced before rearrangement could occur to the thermodynamically more stable vallesiachotamine isomers (4) with N_4 - C_{17} bonds. The labile intermediates were considered to be 21-dehydroheteroyohimbines (5) or the related enamines (6) which we have now confirmed by trapping as their stable, crystalline cyanide adducts (7) from which the dehydro compounds can be subsequently regenerated.

A mixture of vincoside and strictosidine was prepared by condensation of tryptamine (1) and secologanin (2) in pH4.0 citrate/phosphate buffer. After the pH had been adjusted to 5.5, β -glucosidase and a two-fold excess of KCN were added, and the solution left to stand overnight. The products were isolated by chloroform extraction and crystallisation from methanol afforded one compound $C_{21}H_{24}N_3O_3$ (M^+ 277.1789), m.p. $231-2^{\circ}$ [α] $_D^{25}$ -170° (CHCl $_3$) in ca. 10% yield. The basic heteroyohimbine structure was evident from mass spectral fragments as was the presence of a cyano group, which also showed an i.r. band at 2240 cm $^{-1}$; a positive Cotton effect in the c.d. spectrum at 295 n.m. indicated that H-3 was α . After a detailed analysis of the p.m.r. spectrum (see Table) the structure was assigned as 21-cyano-tetrahydroalstonine (7a) which was confirmed by reduction to tetrahydroalstonine after prolonged treatment with NaBH $_4$ in ethanol at 40° for 24 hrs. Treatment of an ethanolic solution of (7a) overnight with silver acetate liberated the labile 20,21-dehydroajmalicine (6a), identified from its spectral data and by its rapid reduction to tetrahydro-alstonine (8a) with NaBH $_4$.

21-Cyano-tetrahydroalstonine

ĕ
igi
mm.
ıkma
30-g
Cya
21-(

J (Hz)		12 (H-14 β), 3.6 (H-14 α) 2 (H-6's)					13 (H-14\beta), 4.5 (H-15), 3.6 (H-3)	13 (H-14 α), 12 (H-3), 12 (H-15)	12 (H-14\beta), 4.5 (H-14\alpha), 4.5 (H-20)		6 Hz (H-19)	10.2 (H-20), 6 Hz (H-18's)	10.2 (H-19), 4.5 (H-15), 1.5 Hz (H-21)	1-20)	
		12 (H					13 (H	13 (H	12 (H		6 Hz	10.2	10.2	1.5 (H-20)	
Multiplicity	w	d + f. c.		M (3H)	M (1H)		d of t's	σ	d of t's	ĸΩ	р	sextet	d of d's	ਯ	ω
٢	2.15	6.00		7.06	7.24		7.44	8.49	6.86	2, 23	8.37	5.57	8.03	5.84	6.21
J (Hz)		13 (H-14 α), 2 (H-14 β), 1 (H-6)	11.5(H-5 β), 6 (H-6 α), 1.2 (H-6 β)	11.5 (H-5 α), 11.5 (H-6 α), 4.2 (H-6 β)	15.5 (H-6 β), 11.5 (H-5 β), 6 (H-5 α)	15.5 (H-6 α), 4.2 (H-5 β), 1.2 (H-5 α)	15.5 (H-14\$), 13 (H-3), 4.2 (H-15)	15.5 (H-14 α), 2.5 (H-3), 2.5 (H-15)	6.4 (H-20), 4.2 (H-14 α), 2.5 (H-14 β)		6.5 (H-19)	6.5 (H-18), 1 (H-20)	11.5 (H-21), 5.4 (H-13), 1 (H-19)	11.5 (H-20)	
Multiplicity	Ø	d + f.c.	q + f.c.	t of d's	В	d + f. c.	t of d's	d of t's	broad s	æ	ъ	q + f.c.	q + f.c.	р	ω
۲	2.13	6.70	6.34	7.40	7.00	7.24	8.26	6.75	6.91	2.38	8.65	5.23	7.72	6,63	6.27
Proton	NH	H-3	H-5 α	H -5 β	Η-6α	θ9-Н	$H-14\alpha$	H-14 <i>\beta</i>	H-15	H-17	H-18 (Me)	H-19	H-20	H-21	CO ₂ Me

<u>1</u>

2

3-H a: α b: β

4

7

<u>8</u>

Chromatography of the mother liquors afforded more (7a) and an isomeric compound m.p. 189-190°. The latter was assigned the structure of 21-cyanoakuammigine (7b) from u.v., i.r., c.d. and m.s. spectra and a detailed p.m.r. analysis (see Table) as before, and confirmed by reduction to akuammigine (8b) in the same way.

Overall the yield of crystalline cyano-alkaloids was \underline{ca} . 20%, with a greater proportion of the 3α isomer. The simplicity and reversibility of the procedure make it an attractive method for preparing the previously inaccessible 21-dehydro alkaloids, and in particular labelled compounds, for further biosynthetic studies.

We thank the S.R.C. for financial support (J.L.).

REFERENCES

- 1. R. T. Brown, J. Leonard, and S. K. Sleigh, J.C.S. Chem. Comm., 1977 (in press).
- 2. S. Yamado and H. Skimoto, Tetrahedron Letters, 1969, 3105.
- J. Stöckigt, H. P. Husson, C. Kan-Fan, and M. W. Zenk, <u>J.C.S. Chem. Comm.</u>, 1977, 164.